3.2.11 \(\int (a+a \cos (c+d x))^{3/2} \sec ^4(c+d x) \, dx\) [111]

Optimal. Leaf size=144 \[ \frac {11 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {11 a^2 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

11/8*a^(3/2)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+11/8*a^2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
+11/12*a^2*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/3*a^2*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*cos(d*x+c))^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {2841, 21, 2851, 2852, 212} \begin {gather*} \frac {11 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {11 a^2 \tan (c+d x)}{8 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 \tan (c+d x) \sec ^2(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {11 a^2 \tan (c+d x) \sec (c+d x)}{12 d \sqrt {a \cos (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^4,x]

[Out]

(11*a^(3/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (11*a^2*Tan[c + d*x])/(8*d*Sqrt[
a + a*Cos[c + d*x]]) + (11*a^2*Sec[c + d*x]*Tan[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*Sec[c + d*x]^
2*Tan[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2841

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
 + a*d))), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1
)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1
] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{3/2} \sec ^4(c+d x) \, dx &=\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {1}{3} a \int \frac {\left (-\frac {11 a}{2}-\frac {11}{2} a \cos (c+d x)\right ) \sec ^3(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{6} (11 a) \int \sqrt {a+a \cos (c+d x)} \sec ^3(c+d x) \, dx\\ &=\frac {11 a^2 \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{8} (11 a) \int \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \, dx\\ &=\frac {11 a^2 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{16} (11 a) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac {11 a^2 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {\left (11 a^2\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac {11 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {11 a^2 \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {11 a^2 \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sec ^2(c+d x) \tan (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.37, size = 110, normalized size = 0.76 \begin {gather*} \frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (66 \sqrt {2} \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+54 \sin \left (\frac {1}{2} (c+d x)\right )+11 \left (\sin \left (\frac {3}{2} (c+d x)\right )+3 \sin \left (\frac {5}{2} (c+d x)\right )\right )\right )}{96 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^4,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(66*Sqrt[2]*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Co
s[c + d*x]^3 + 54*Sin[(c + d*x)/2] + 11*(Sin[(3*(c + d*x))/2] + 3*Sin[(5*(c + d*x))/2])))/(96*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(717\) vs. \(2(124)=248\).
time = 0.17, size = 718, normalized size = 4.99

method result size
default \(\frac {\sqrt {a}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-264 a \left (\ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+\ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+132 \left (2 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+3 \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +3 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-22 \left (16 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+9 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +9 \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+126 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+33 \ln \left (\frac {4 a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +33 \ln \left (-\frac {4 \left (a \sqrt {2}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a \right )}{6 \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right )^{3} \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(718\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/6*a^(1/2)*cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(-264*a*(ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*
2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^
(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^
6+132*(2*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1
/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a+3*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a
*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4-22*(1
6*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+9*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x
+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a+9*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2
)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a)*sin(1/2*d*x+1/2*c)^2+126*a^(1/2)*
2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+33*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^
(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a+33*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/
2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^3/(2*cos(1
/2*d*x+1/2*c)-2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 5542 vs. \(2 (124) = 248\).
time = 158.65, size = 5542, normalized size = 38.49 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

-1/96*(774*sqrt(2)*a*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 162*sqrt(2)*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*
c) + (14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^
2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log
(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x
+ 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
+ 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(
2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(6*d*x + 6*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d*
x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2
*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*co
s(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2
*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*s
qrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(4*d*x + 4*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin
(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2
*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*s
qrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(
1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) +
 2))*cos(2*d*x + 2*c)^2 + (14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*
cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1
/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2
*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*
cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x
 + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(6*d*x + 6*c)^2 + 9*(14
*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si
n(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1
/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
 + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt
(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1
/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(4*d*x + 4*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d*x + 3/2*
c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt
(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2
*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*
x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
 + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*s
in(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 44*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 132*sqrt(2)*a*sin(1/2*d*x +
 1/2*c) + 14*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(15
/2*d*x + 15/2*c) + 90*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c
))*cos(13/2*d*x + 13/2*c) - 2*(87*sqrt(2)*a*sin(11/2*d*x + 11/2*c) + 157*sqrt(2)*a*sin(9/2*d*x + 9/2*c) + 129*
sqrt(2)*a*sin(7/2*d*x + 7/2*c) + 27*sqrt(2)*a*sin(5/2*d*x + 5/2*c) - 29*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 111*s
qrt(2)*a*sin(1/2*d*x + 1/2*c) - 3*(14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*
a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2
*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/
2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*
sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin
(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1...

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 173, normalized size = 1.20 \begin {gather*} \frac {33 \, {\left (a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (33 \, a \cos \left (d x + c\right )^{2} + 22 \, a \cos \left (d x + c\right ) + 8 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/96*(33*(a*cos(d*x + c)^4 + a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*c
os(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(33*a*c
os(d*x + c)^2 + 22*a*cos(d*x + c) + 8*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^4 + d*cos(d*x
+ c)^3)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*sec(d*x+c)**4,x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 8009 deep

________________________________________________________________________________________

Giac [A]
time = 0.50, size = 158, normalized size = 1.10 \begin {gather*} -\frac {\sqrt {2} {\left (33 \, \sqrt {2} a \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + \frac {4 \, {\left (132 \, a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 176 \, a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 63 \, a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

-1/96*sqrt(2)*(33*sqrt(2)*a*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c
)))*sgn(cos(1/2*d*x + 1/2*c)) + 4*(132*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 - 176*a*sgn(cos(1/2*
d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 63*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x + 1
/2*c)^2 - 1)^3)*sqrt(a)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^4,x)

[Out]

int((a + a*cos(c + d*x))^(3/2)/cos(c + d*x)^4, x)

________________________________________________________________________________________